

#### **MICROGRIDS**



## Systemic Economic-Environmental Analysis for Building-Scale Microgrids

by

#### Chris Marnay

C Marnay@lbl.gov - +1.510.486.7028 - http://der.lbl.gov

(Michael Stadler, Judy Lai, Afzal Siddiqui, Ilan Momber, Sebastian Beer, Gonçalo Cardoso, Oliver Mégel, and Tomás Gómez)

seminar at

LBNL D.C. Projects Office

7 Dec 2009





#### **Outline**



#### **DER-CAM OVERVIEW**

- introduction to the Distributed Energy Resources )
   Customer Adoption Model (DER-CAM)
- three types of analysis application (commercialization): (single building/microgrid, policy, real-time control)
- results (new and old)
  (CERTS Microgrid biz case, ZNEB, EV charging, valuing PQR)

#### **MICROGRIDS**

• definition, example, and philosophy

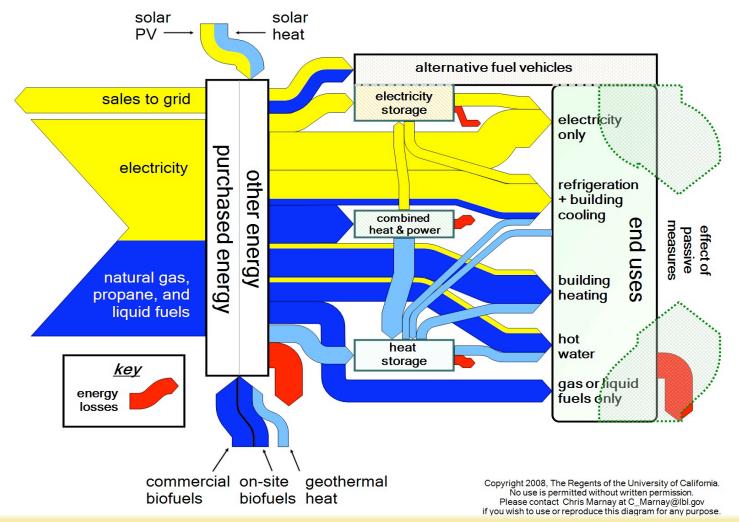
#### **MISCELLANEA**

- DER-CAM math & specifying equipment options
- demand-side/energy efficiency measures
- zero net energy buildings
- valuing power quality and reliability







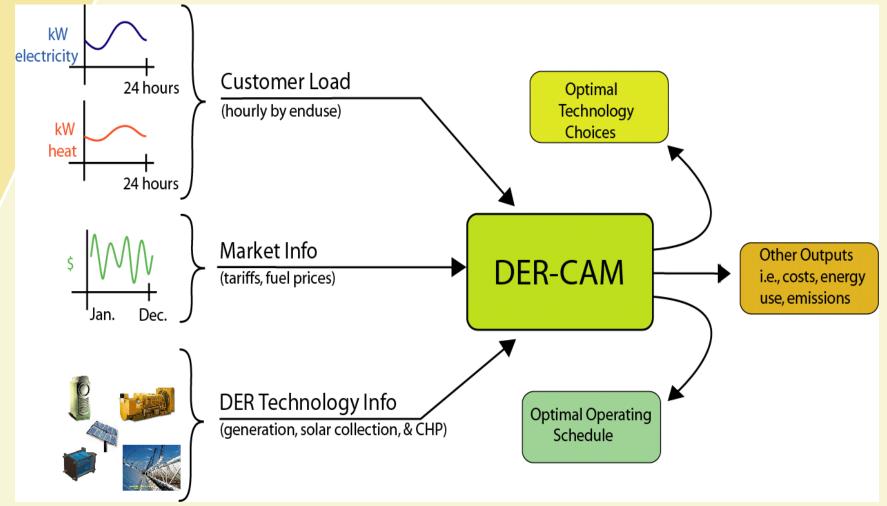

## **DER-CAM Overview**





#### **DER-CAM Concept**










### DER-CAM Logic









#### CA Nursing Home Results



(cost min. cases with eff./beh., ZNEB, and subsidies)

| RUNS                                    | 1: do<br>nothing | 2: all<br>techs<br>+eff | 3: all techs +subs | 4:all<br>techs+eff<br>+ZNEB | 5: same<br>as 4<br>+subs | <u>k</u> |
|-----------------------------------------|------------------|-------------------------|--------------------|-----------------------------|--------------------------|----------|
| 100 kW recip. engine w/HX (kW)          |                  | 300                     | 300                | 0                           | 200                      | )        |
| abs. chiller (kW.e displaced)           |                  | 0                       | 40                 | 238                         | 0                        |          |
| solar thermal (kW.t)                    | n/a              | 0                       | 43                 | 3952                        | 8                        |          |
| PV (kW)                                 | II/a             | 0                       | 517                | 2408                        | 3162                     |          |
| electric storage (kWh)                  |                  | 0                       | 2082               | 0                           | 1514                     |          |
| thermal storage (kWh)                   |                  | 0                       | 47                 | 9897                        | 0                        |          |
| annual cost                             | s (k\$) and      | d percenta              | ge saving          |                             |                          |          |
| total (incl. annualized equip. cost)    | 964              | 721                     | 910                | 1783                        | 829                      |          |
| savings cmprd. to do-nothing (%)        | n/a              | ( 25                    | ) 6                | ( -85                       | ) ( 14                   | )        |
| annual utilit                           | y energy         | consumpt                | ion (GWł           | (ו                          |                          |          |
| electricity                             | 5.8              | 2.1                     | 2.4                | 3.4                         | 2.3                      |          |
| NG                                      | 5.7              | 8.9                     | 10                 | 0.004                       | 7.5                      |          |
|                                         | nergy sa         | les (GWh)               |                    |                             |                          |          |
| electricity                             | n/a              | n/a                     | n/a                |                             |                          |          |
| annual CO <sub>2</sub> emissions (t/a), |                  |                         |                    |                             |                          |          |
| emissions                               | 3989             | 2704                    | 3058               | 1752                        | 2548                     |          |
| savings cmprd. to do-nothing (%)        | n/a              | 32.2                    | 23                 | 56                          | 36                       |          |

CHP appears in solution

ZNE reached at a cost increase of approx. 85%

utilizing a *subsidy* for PV and storage of M\$13, or a CO<sub>2</sub> emission reduction cost of \$259 /tCO<sub>2</sub> compared to a \$18/tCO<sub>2</sub> market price

run 1 do nothing (buy gas & electricity at standard tariffs)

run 2 all techs. considered + efficiency/behavior

run 3 all techs. considered + subsidies for PV (60%) & storage (70%)

run 4 all techs.. considered + efficiency/behavior + ZNEB constraint

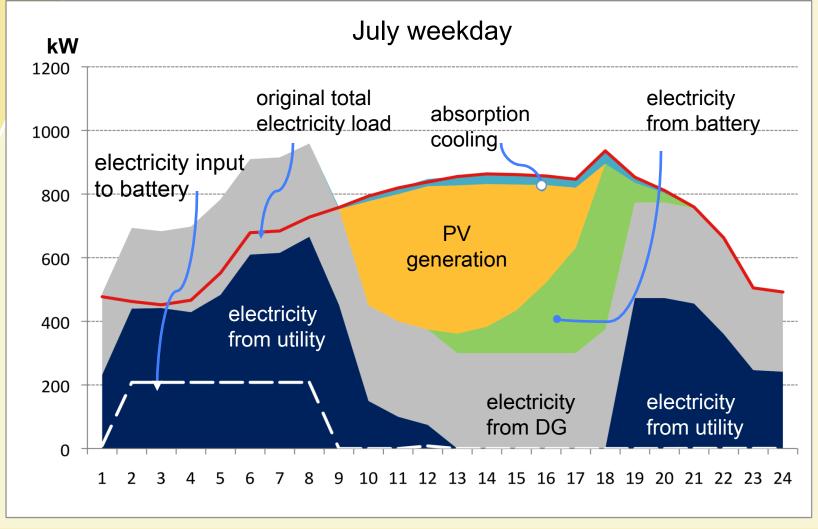
run 5 all techno. considered + efficiency/behavior + ZNEB constraint + subsidies

subsidies:

PV = \$4005/kW

E. storage = \$133/kWh

T. storage = \$50/kWh



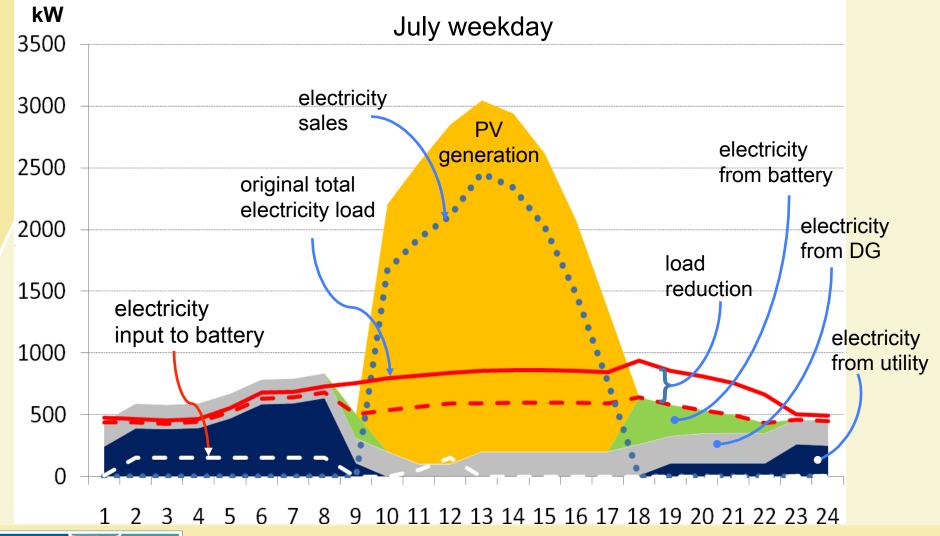



#### Electricity Balance at N.H.



(run 3: PV and storage subsidies)



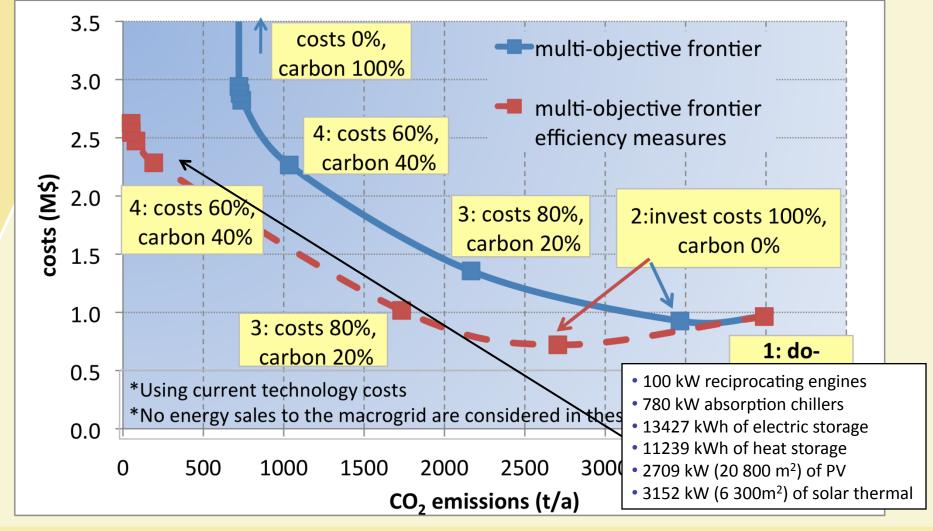





#### Electricity Balance at N.H.



(run 5: eff. + ZNE + PV/storage subs.)

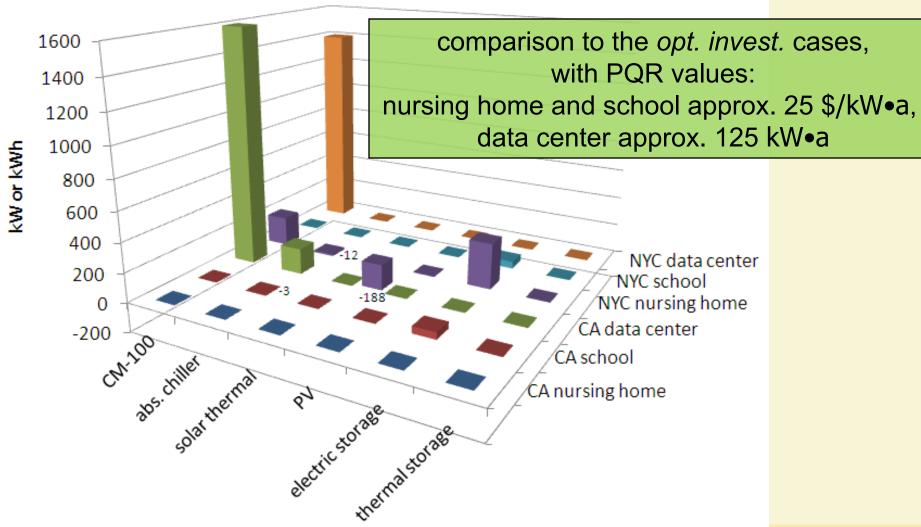







## Cost-Carbon Frontier (no ZNE constraint)










#### Added PQR Results









### EVs and Microgrids

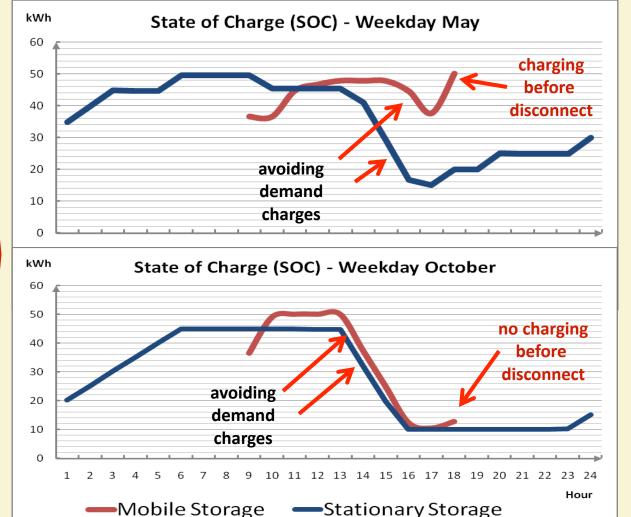


- electric vehicle interactions with buildings quite unexplored
- DER-CAM a useful tool to understand how EVs might optimally be used by microgrids
- to explore how would EVs be used and what their value is
- developed capability to optimally operate electrical storage
- EV interactions cannot be considered in isolation
- representation of constraints very complex (battery degradation, driving behavior, contracts, ...)
- confused legal and economic institutions
- currently exploring two types of EV effects:
  - employee vehicles parked for work day at buildings
  - value of used EV batteries as stationary storage





#### **Preliminary Results**



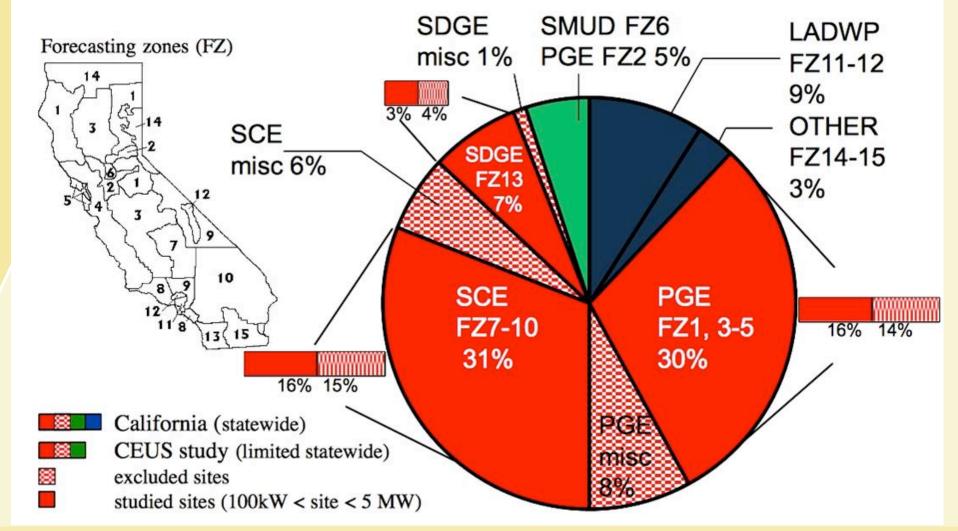

(batteries and EVs at small S.F. office blg,

- PG&E A1 buildings with peak demand 200-500 kW
- dmd. chrg. > \$10/kW/mo.
- connection payment 200 \$/kWh/a
- stationary storage at60 \$/kWh investment cost
- energy exchange price5 \$/kWh
- net annual zero transfer

| Time of connection    | 9:00  |
|-----------------------|-------|
| Time of disconnection | 18:00 |
| SOC in [%]            | 73%   |
| SOC out [%]           | NONE  |

Installed capacity of 50 kWh mobile storage translates into about 5 PHEVs with 16 kWh name plate battery capacity each



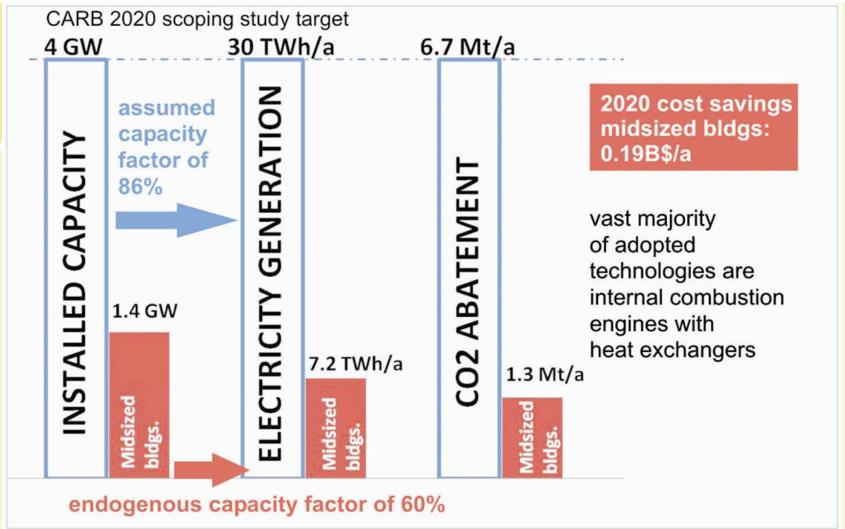







## Sample ~35% of CA Com. Sector Demand







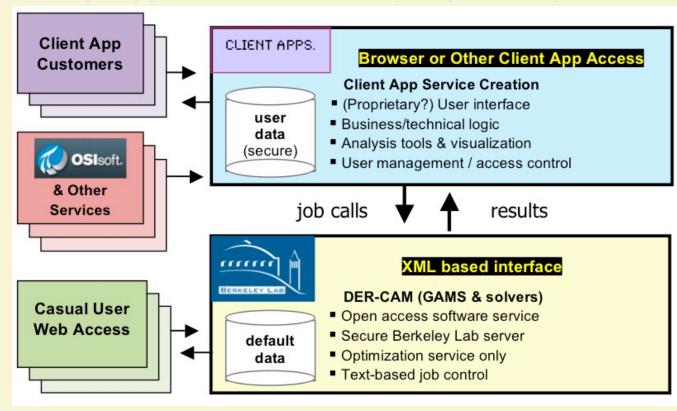



#### Results Summary










## DER-CAM Commercialization



GAMS doesn't offer a good path to commercialization: academic, cryptic text interface, expensive, ...

Software
as a
Service
model is
one
solution.









#### What next?



#### **ACTIVE**

- battery evaluation web site for large CA C&I customers
- adding electric vehicle interactions (V2G & V2M)
- dynamic control (Energy Manager)
- residential and small commercial DC systems

#### **WISH LIST**

- energy efficiency
- commercialization as SaaS
- more on PQR (DC systems)
- more on EV's (joint optimization)
- applied dynamic control
- Uncertainty
- links to building energy simulation









## Microgrids





#### What is a Microgrid?

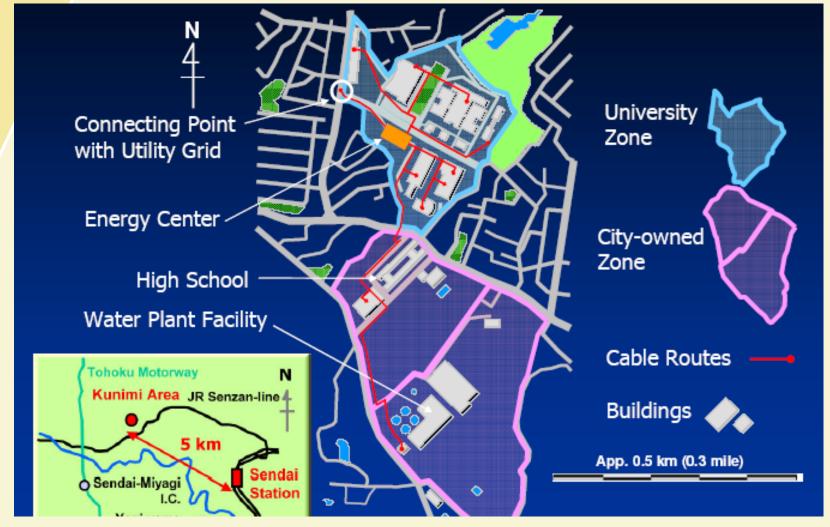


A controlled grouping of energy (including electricity) sources and sinks that is connected to the macrogrid but can function independently of it.

main benefits to developers of microgrids:

- pushing efficiency limits by heat recovery (CHP)
- providing heterogeneous power quality and reliability (PQR)
- creating a more favorable environment for efficiency and small-scale renewables and/or protecting the grid from them

#### other societal benefits include:


- avoiding macrogrid investments
- hardening of supply
- curbing generator market power, etc.
- load leveling





#### Sendai Project Plan



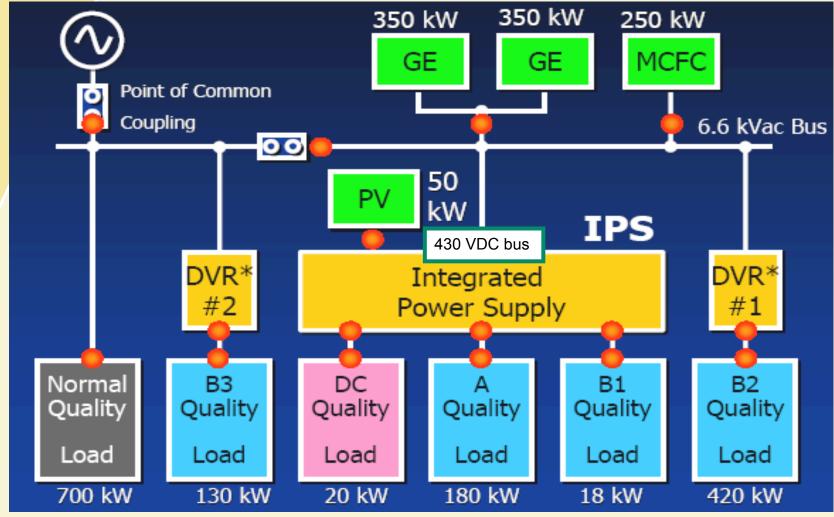






### Sakura at Sendai Microgrid










#### Sendai Project Schematic

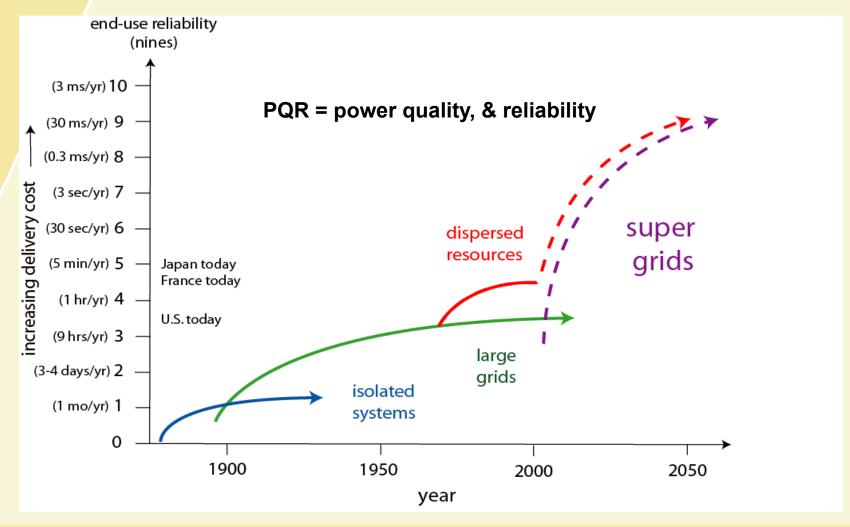








### Sendai Project Pictures



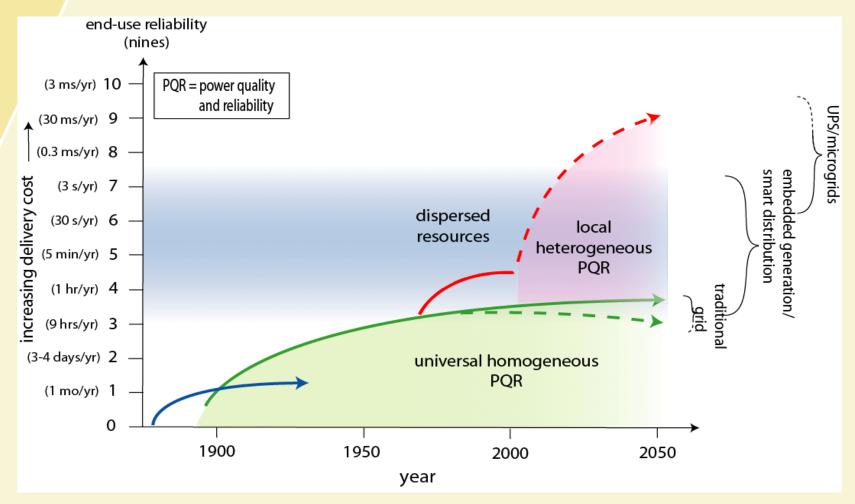





#### Supergrid Vision





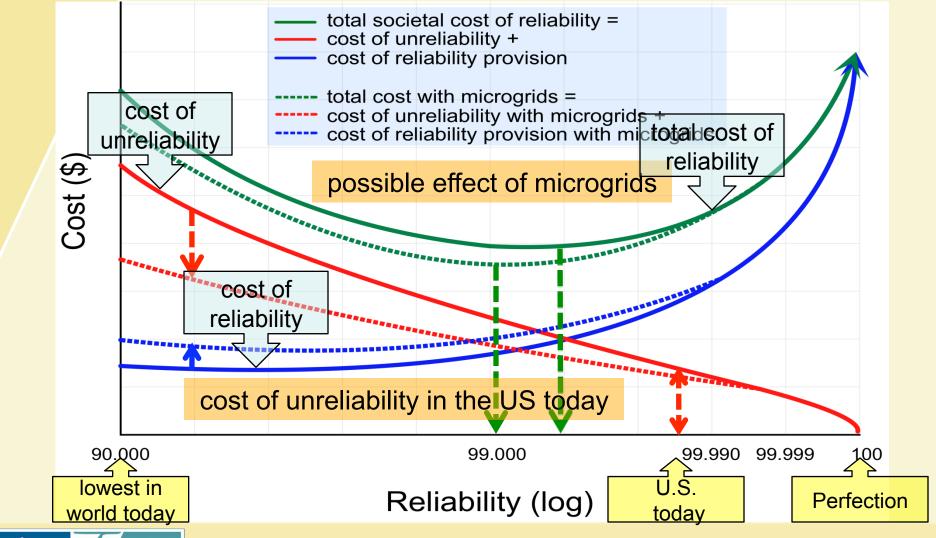





#### Dispersed Vision



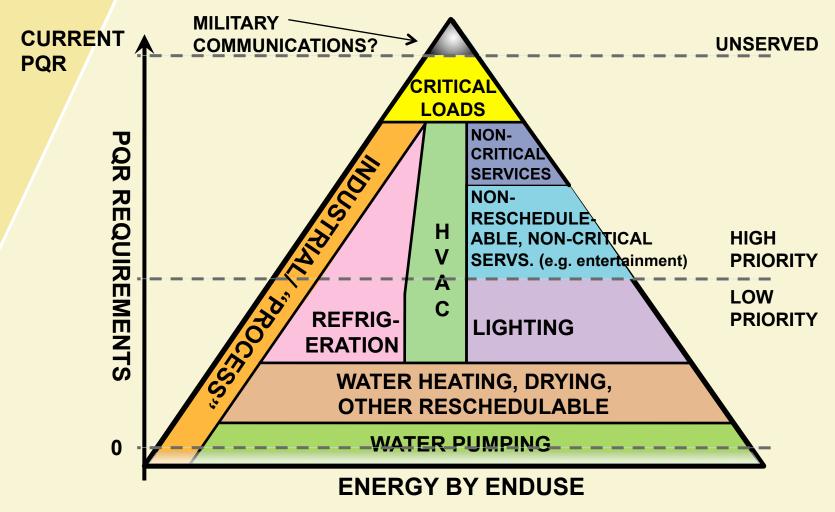
(distributed control & heterogeneous service)








# Choosing Universal Service Quality



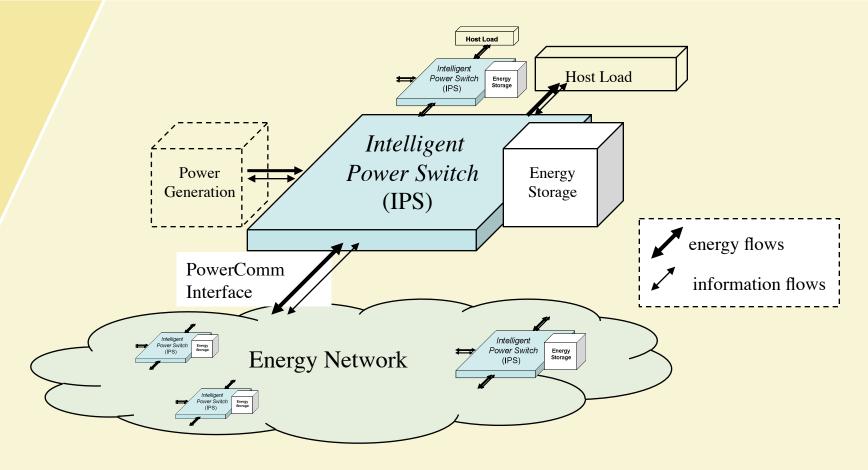





# Loads Disaggregated by PQR Requirements












# Local Intelligent Power Switch











# DER-CAM Modeling Issues



### **DER-CAM Description**



- Mixed Integer Linear Program (MILP), written in the General Algebraic Modeling System (GAMS®)
- minimizes the annual energy services bill (or carbon emissions, or multiple objectives, or ...) of providing services on a microgrid level (typically buildings with 250-2000 kW peak)
- produces technology neutral pure optimal results with highly variable run times
- used for more than 5 years by Berkeley Lab and under license by researchers in the US, Germany, Spain, Belgium, Japan, and Australia
- potentially commercialized (software as a service model)





#### **Cost Objective Function**



```
Cost = \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\} + \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\} + \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\} + \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\} + \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\} + \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\} + \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\} + \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\} + \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\} + \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\} + \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\} + \sum_{m \in M, t \in T, h \in H} \left\{ Load_{e', m, t, h} + Load_{e', m, t, h} \right\}
 + \sum \sum_{n=1}^{\infty} \left( DERInvestment_i \cdot Maxp_i + Capacity_{pv} \right) StandbyCharge + \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} ElectricityPurchase_{m,t,h} \cdot N_{m,t} \cdot ElectricityRate_{m,p}
 +\sum_{m=1}^{m\in\mathcal{M}}\sum_{i=1}^{m\in\mathcal{M}}\sum_{m=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{i=1}^{m\in\mathcal{M}}\sum_{m=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{i=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in\mathcal{M}}\sum_{k=1}^{m\in
           +\sum_{m,t}\sum_{l}\sum_{m}\sum_{m,t,h}\sum_{m,t,h}\cdot MktCRate\cdot N_{m,t}\cdot CTax -\sum_{m}\sum_{m}\sum_{m}\sum_{m}\sum_{m,t,h}GenX_{i,m,t,h}\cdot N_{m,t}\cdot PX_{m,t,h}
    - SwitchPurchase · StaticSwitchParameterValue · SwitchSize - \sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{N}} ElectricityPVExport_{m,t,h} \cdot N_{m,t} \cdot PX_{m,t,h}
       + \sum_{m \in M} \sum_{i \in I} \sum_{k \in I} \left( GenL_{i,m,t,h} + GenX_{i,m,t,h} \right) \cdot \frac{1}{E_i} \cdot N_{m,t} \cdot \begin{pmatrix} NGBasicPrice_m \\ + NGCarbonEmissionsRate \cdot CTax \end{pmatrix}
+\sum_{m\in\mathbb{N}}\sum_{i\in\mathbb{N}}NGf\ or Heat_{m,t,h}\cdot N_{m,t}\cdot \left(\frac{NGBasicPrice_{m}}{+NGCarbonEmissionsRate\cdot CTax}\right) +\sum_{m\in\mathbb{N}}\sum_{i\in\mathbb{N}}\sum_{j\in\mathbb{N}}\sum_{i\in\mathbb{N}}\left(GenL_{i,m,t,h}+GenX_{i,m,t,h}\right)\cdot \frac{1}{E_{i}}\cdot N_{m,t}\cdot OtherFuelPrice_{i}
 + \sum_{m,l} \sum_{k} \sum_{l} NGf \ or NGCM_{k,m,t,h} \cdot N_{m,t} \cdot (NGfor ABS_m + NGCarbon Emissions Rate \cdot CTax)
    +\sum_{i=1}^{m\in\mathcal{M}} \underbrace{(\text{MonthlyFeeNGBasic} + \text{MonthlyFeeNGforDG} + \text{MonthlyFeeNGforABS})}_{i} + \sum_{i=1}^{m\in\mathcal{M}} \underbrace{(\text{MonthlyFeeNGforDG} + \text{MonthlyFeeNGforABS})}_{i} + \sum_{i=1}^{m\in\mathcal{M}} \underbrace{(\text{MonthlyFeeNGforABS})}_{i} 
     + \sum_{k} NGChillPurchaseQuantity_{k} \cdot \text{Maxp}_{k} \cdot \text{CapCost}_{k} \cdot \text{Annuity}_{k} + \sum_{k \in \mathcal{L}} \left( Purchase_{\ell} \cdot \text{FixedCost}_{\ell} + Capacity_{\ell} \cdot \text{VariableCost}_{\ell} \right) \cdot \text{Annuity}_{\ell}
       + SwitchPurchase · (SwitchSize · CostM + CostB)· AnnuitySwitch + \sum_{v \in M} \sum_{i=1}^{n} DERInvestment_i \cdot \text{Maxp}_i \cdot \frac{OMF1X_i}{12}
+\sum_{m\in\mathcal{M}}\sum_{k\in\mathcal{L}}Capacity_{\ell}\cdot \text{FixedMaintenance}_{\ell} +\sum_{m\in\mathcal{M}}\sum_{k\in\mathcal{L}}NGChillPurchaseQuantity_{k}\cdot \text{Maxp}_{k}\cdot \frac{\text{OMFix}_{k}}{12}
         +\sum_{m\in\mathcal{M}}\left[\sum_{k\in\mathcal{K}}\sum_{t\in\mathcal{T}}\sum_{h\in\mathcal{H}}NGChillAmount_{k,m,t,h}\cdot N_{m,t}\cdot OMVar_{k}\right]+\sum_{m\in\mathcal{M}}\left(\sum_{i\in\mathcal{T}}\sum_{h\in\mathcal{H}}\left(GenL_{i,m,t,h}+GenX_{i,m,t,h}\right)N_{m,t}\cdot OMVar_{i}\right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         + \sum_{d \in D} \sum_{m \in M} \sum_{t \in T} \sum_{b \in H} Demand \operatorname{Re} sponse_{d,m,t,h}' \cdot \operatorname{N}_{m,t} \cdot \operatorname{DemandResponseVC}_{d}
```



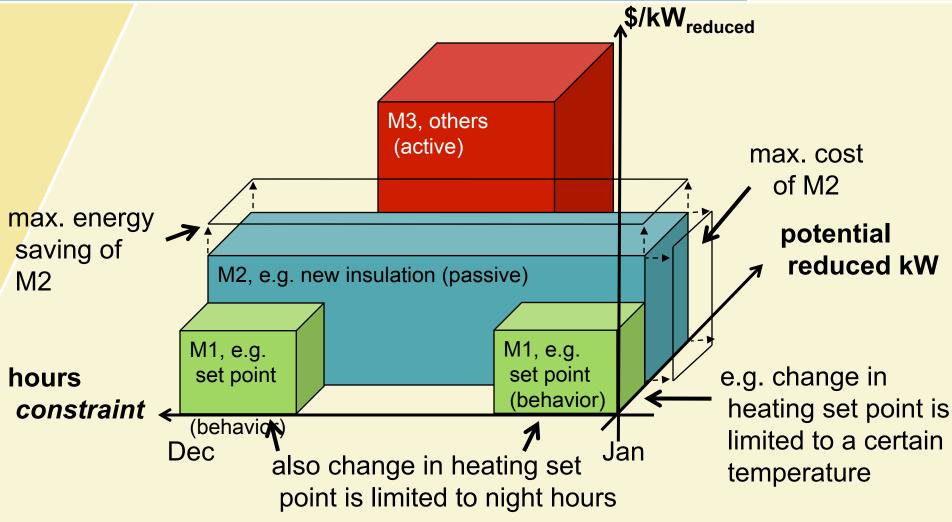
### Available Equipment



| diagrata                      | CM-1 | fuel        |
|-------------------------------|------|-------------|
| discrete                      | 00   | cell        |
| capacity (kW)                 | 100  | 200         |
| sprint capacity               | 125  | ><          |
| installed costs (\$/kW)       | 2400 | 5005        |
| with heat recovery (\$/kW)    | 3000 | <b>5200</b> |
| variable maintenance (\$/kWh) | 0.02 | 0.029       |
| efficiency (%, HHV)           | 26   | 35          |
| lifetime (a)                  | 20   | 10          |

only integer installations

continuous


| fixed unavoidable costs            | electrical<br>storage<br>(lead acid) | thermal<br>storage | flow<br>battery | absorption<br>chiller | solar<br>thermal | PV   |  |
|------------------------------------|--------------------------------------|--------------------|-----------------|-----------------------|------------------|------|--|
| intercept costs (\$)               | 295                                  | 10000              | 0               | 20000                 | 20000 1000       |      |  |
| capacity (\$/<br>kW or \$/<br>kWh) | 193                                  | 100                | 2125/<br>220    | 127                   | 500              | 6675 |  |
| lifetime (a)                       | 5                                    | 17                 | 10              | 15                    | 15               | 20   |  |





#### Dmd. Measure Potential,









### Zero Net Energy Bldgs.



- ZNEB constraint: purchased energy = sold energy
- energy must be in common units (heat equivalent)
- o footprint constraint: the possible space for PV and solar thermal adoption must be restricted
- multiple possible minimization objectives:
  - energy or energy bill
  - carbon emissions
  - combination or other
- consideration of demand response measures:
  - load shifting measures represented by storage
  - load reduction measures represented by abstract low, mid, and high measures





### PQR at 3 Example Bldgs/



|                 | Floor-<br>space<br>(000 m <sup>2</sup> ) | peak<br>load<br>(MW) | annual electricity (GWh) | annual<br>NG<br>(TJ) | Fs,<br>base | Fs,<br>peak |
|-----------------|------------------------------------------|----------------------|--------------------------|----------------------|-------------|-------------|
| nursing<br>home | 32                                       | 0.96                 | 5.8                      | 20                   | 0.5         | 0.1         |
| school          | 18                                       | 0.88                 | 1.5                      | 2.6                  | 0.25        | 0           |
| data<br>center  | 0.6                                      | 1.8                  | 11.4                     | 0                    | 1           | 1           |



#### Detailed CM Results



| cases                                                      | nursing home |        |      | school  |        |      | data center |        |       |
|------------------------------------------------------------|--------------|--------|------|---------|--------|------|-------------|--------|-------|
| Cases                                                      |              | opt    |      |         | opt    |      |             | opt    |       |
| chosen equipment                                           | utility      | invest | CM   | utility | invest | CM   | utility     | invest | CM    |
| CM-100 + CHP (kW)                                          |              | 300    | 300  |         | 0      | 0    |             | 0      | 1600  |
| switch size (kW)                                           |              | na     | 260  |         | na     | 9.7  |             | na     | 1788  |
| abs. chiller (kW.e)                                        | na           | 48     | 48   | na      | 139    | 136  | na          | 141    | 316   |
| solar therm (kW.t)                                         | na           | 134    | 134  | na      | 65     | 65   | na          | 0      | 0     |
| elect. storage (kWh)                                       |              | 0      | 0    |         | 0      | 47   |             | 0      | 0     |
| therm. stor. (kWh)                                         |              | 0      | 0    |         | 0      | 0    |             | 0      | 0     |
| results: costs, energy consumption, emissions, and savings |              |        |      |         |        |      |             |        |       |
| electricity (k\$/a)                                        | 758          | 429    | 429  | 264     | 246    | 242  | 1478        | 1459   | 871   |
| NG (k\$/a)                                                 | 206          | 359    | 359  | 24      | 26     | 26   | 1.8         | 9.7    | 322   |
| on-site DG (k\$/a)                                         | na           | 138    | 135  | na      | 7.44   | 254  | na          | 4.0    | 249   |
| Total cost (k\$/a)                                         | 964          | 926    | 924  | 288     | 280    | 280  | 1480        | 1473   | 1443  |
| electricity (GWh/a)                                        | 5.8          | 3.2    | 3.2  | 1.5     | 1.5    | 1.5  | 11.42       | 11.4   | 8.44  |
| NG (GWh/a)                                                 | 5.7          | 10.0   | 10.0 | 0.7     | 8.0    | 8.0  | 0.0         | 0.23   | 9.14  |
| C emissions (t/a)                                          | 1088         | 945    | 945  | 360     | 358    | 358  | 1599        | 1606   | 1634  |
| CM val. (\$/kW*a)                                          | na           | na     | <=25 | na      | na     | <=25 | na          | na     | <=125 |
| % cost savings (k\$/a)                                     | na           | 3.9    | 4.1  | na      | 2.87   | 2.83 | na          | 0.47   | 2.50  |
| % C savings (tC/a)                                         | na           | 13.1   | 13.1 | na      | 0.58   | 0.52 | na          | -0.5   | -2.0  |

<sup>\*</sup> no subsidies considered in optimum invest case







## Thank you!

http://www.youtube.com/watch?v=3XuCJBvq6Sk

http://der.lbl.gov

